JAVA5 中锁的概念
java中有三种锁的实现,分别是
ReentrantLock 普通锁
ReentrantReadWriteLock 读写锁
其中读锁和写锁互斥,写锁和写锁互斥,读锁和读锁可以并发。
public class LockTest {
Lock lock = new ReentrantLock();
ReadWriteLock rwlock = new ReentrantReadWriteLock();
// 读取时候上读锁,写的时候上写锁
public void read() {
rwlock.readLock().lock();
// 读取数据的代码,多个读锁不互斥
//
rwlock.readLock().unlock();
}
public void write(int i) {
rwlock.writeLock().lock();
// 修改数据是上写锁,写锁之间互斥,写锁和读锁互斥。
rwlock.writeLock().unlock();
}
//Condition 实现类似的缓冲队列
class BoundedBuffer {final Lock lock = new ReentrantLock();final Condition notFull = lock.newCondition(); final Condition notEmpty = lock.newCondition(); final Object[] items = new Object[100];int putptr, takeptr, count;public void put(Object x) throws InterruptedException {lock.lock();try {while (count == items.length) notFull.await();items[putptr] = x; if (++putptr == items.length) putptr = 0;++count;notEmpty.signal();} finally {lock.unlock();}}public Object take() throws InterruptedException {lock.lock();try {while (count == 0) notEmpty.await();Object x = items[takeptr]; if (++takeptr == items.length) takeptr = 0;--count;notFull.signal();return x;} finally {lock.unlock();}} }
java里的信号量的概念: Seamphore类的实用案例
public static void main(String[] args) {
ExecutorService service = Executors.newCachedThreadPool();
//final Semaphore sp = new Semaphore(3);
final Semphore sp =new Semaphore(3);
for(int i=0;i<10;i++){
Runnable runnable = new Runnable(){
public void run(){
try {
sp.acquire();
} catch (InterruptedException e1) {
e1.printStackTrace();
}
System.out.println("线程" + Thread.currentThread().getName() +
"进入,当前已有" + (3-sp.availablePermits()) + "个并发");
try {
Thread.sleep((long)(Math.random()*10000));
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("线程" + Thread.currentThread().getName() +
"即将离开");
sp.release();
//下面代码有时候执行不准确,因为其没有和上面的代码合成原子单元
System.out.println("线程" + Thread.currentThread().getName() +
"已离开,当前已有" + (3-sp.availablePermits()) + "个并发");
}
};
service.execute(runnable);
}
}
//jdk 官方案例
一个计数信号量。从概念上讲,信号量维护了一个许可集。如有必要,在许可可用前会阻塞每一个 acquire()
,然后再获取该许可。每个 release()
添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore
只对可用许可的号码进行计数,并采取相应的行动。
Semaphore 通常用于限制可以访问某些资源(物理或逻辑的)的线程数目。例如,下面的类使用信号量控制对内容池的访问:
class Pool {private static final int MAX_AVAILABLE = 100;private final Semaphore available = new Semaphore(MAX_AVAILABLE, true);public Object getItem() throws InterruptedException {available.acquire();return getNextAvailableItem();}public void putItem(Object x) {if (markAsUnused(x))available.release();}// Not a particularly efficient data structure; just for demoprotected Object[] items = ... whatever kinds of items being managedprotected boolean[] used = new boolean[MAX_AVAILABLE];protected synchronized Object getNextAvailableItem() {for (int i = 0; i < MAX_AVAILABLE; ++i) {if (!used[i]) {used[i] = true;return items[i];}}return null; // not reached}protected synchronized boolean markAsUnused(Object item) {for (int i = 0; i < MAX_AVAILABLE; ++i) {if (item == items[i]) {if (used[i]) {used[i] = false;return true;} elsereturn false;}}return false;}}
获得一项前,每个线程必须从信号量获取许可,从而保证可以使用该项。该线程结束后,将项返回到池中并将许可返回到该信号量,从而允许其他线程获取该项。注意,调用 acquire()
时无法保持同步锁,因为这会阻止将项返回到池中。信号量封装所需的同步,以限制对池的访问,这同维持该池本身一致性所需的同步是分开的。
将信号量初始化为 1,使得它在使用时最多只有一个可用的许可,从而可用作一个相互排斥的锁。这通常也称为二进制信号量,因为它只能有两种状态:一个可用的许可,或零个可用的许可。按此方式使用时,二进制信号量具有某种属性(与很多 Lock
实现不同),即可以由线程释放“锁”,而不是由所有者(因为信号量没有所有权的概念)。在某些专门的上下文(如死锁恢复)中这会很有用。
此类的构造方法可选地接受一个公平 参数。当设置为 false 时,此类不对线程获取许可的顺序做任何保证。特别地,闯入 是允许的,也就是说可以在已经等待的线程前为调用 acquire()
的线程分配一个许可,从逻辑上说,就是新线程将自己置于等待线程队列的头部。当公平设置为 true 时,信号量保证对于任何调用获取
方法的线程而言,都按照处理它们调用这些方法的顺序(即先进先出;FIFO)来选择线程、获得许可。注意,FIFO 排序必然应用到这些方法内的指定内部执行点。所以,可能某个线程先于另一个线程调用了 acquire
,但是却在该线程之后到达排序点,并且从方法返回时也类似。还要注意,非同步的 tryAcquire
方法不使用公平设置,而是使用任意可用的许可。
通常,应该将用于控制资源访问的信号量初始化为公平的,以确保所有线程都可访问资源。为其他的种类的同步控制使用信号量时,非公平排序的吞吐量优势通常要比公平考虑更为重要。
此类还提供便捷的方法来同时 acquire
和释放
多个许可。小心,在未将公平设置为 true 时使用这些方法会增加不确定延期的风险。
CyclicBarrier 类的实用 :
ExecutorService service = Executors.newCachedThreadPool();
final CyclicBarrier cb = new CyclicBarrier(3);
for(int i=0;i<3;i++){
Runnable runnable = new Runnable(){
public void run(){
try {
Thread.sleep((long)(Math.random()*10000));
System.out.println("线程" + Thread.currentThread().getName() +
"即将到达集合地点1,当前已有" + (cb.getNumberWaiting()+1) + "个已经到达," + (cb.getNumberWaiting()==2?"都到齐了,继续走啊":"正在等候"));
cb.await();
Thread.sleep((long)(Math.random()*10000));
System.out.println("线程" + Thread.currentThread().getName() +
"即将到达集合地点2,当前已有" + (cb.getNumberWaiting()+1) + "个已经到达," + (cb.getNumberWaiting()==2?"都到齐了,继续走啊":"正在等候"));
cb.await();
Thread.sleep((long)(Math.random()*10000));
System.out.println("线程" + Thread.currentThread().getName() +
"即将到达集合地点3,当前已有" + (cb.getNumberWaiting() + 1) + "个已经到达," + (cb.getNumberWaiting()==2?"都到齐了,继续走啊":"正在等候"));
cb.await();
} catch (Exception e) {
e.printStackTrace();
}
}
};
service.execute(runnable);
}
service.shutdown();
}
}