您现在的位置是:主页 > news > 网络分享性网站/营销型网站建设的价格

网络分享性网站/营销型网站建设的价格

admin2025/5/19 13:14:47news

简介网络分享性网站,营销型网站建设的价格,中小型网站建设资讯,网络营销的八大能力考察spark自定义排序 方式一:自定义一个类继承Ordered和序列化,Driver端将数据变成RDD,整理数据转成自定义类类型的RDD,使用本身排序即可。 package com.rz.spark.baseimport org.apache.spark.rdd.RDD import org.apache.spark.{…

网络分享性网站,营销型网站建设的价格,中小型网站建设资讯,网络营销的八大能力考察spark自定义排序 方式一:自定义一个类继承Ordered和序列化,Driver端将数据变成RDD,整理数据转成自定义类类型的RDD,使用本身排序即可。 package com.rz.spark.baseimport org.apache.spark.rdd.RDD import org.apache.spark.{…

考察spark自定义排序

方式一:自定义一个类继承Ordered和序列化,Driver端将数据变成RDD,整理数据转成自定义类类型的RDD,使用本身排序即可。

package com.rz.spark.baseimport org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}// 自定义排序
object CustomSort1 {def main(args: Array[String]): Unit = {val conf = new SparkConf().setAppName(this.getClass.getSimpleName).setMaster("local[2]")val sc = new SparkContext(conf)// 排序规则:首先按照颜值的降序,如果产值相等,再按照年龄的升序val users = Array("xiaohong 30 50","xiaobai 90 50","xiaozhang 78 100", "xiaolong 66 66")// 将Driver端的数据并行化变成RDDval lines:RDD[String] = sc.parallelize(users)// 切分整理数据val userRDD: RDD[User] = lines.map(line => {val fields = line.split(" ")val name = fields(0)val age = fields(1).toIntval fv = fields(2).toInt//(name, age, fv)new User(name, age, fv)})// 不满足要求// tpRDD.sortBy(tp=> tp._3, false)// 将RDD里面封装在User类型的数据进行排序val sorted: RDD[User] = userRDD.sortBy(u=>u)val result = sorted.collect()println(result.toBuffer)sc.stop()}
}// shuffle时数据要通过网络传输,需要对数据进行序列化
class User(val name:String, val age:Int, val fv:Int) extends Ordered[User] with Serializable {override def compare(that: User): Int = {if (this.fv == that.fv){this.age - that.age}else{-(this.fv - that.fv)}}override def toString: String = s"name: $name, age: $age, fv: $fv"
}

方式2:自定义一个类继承Ordered和序列化,Driver端将数据变成RDD,整理数据转成元组类型的RDD,使用就自定义类做排序规则。

package com.rz.spark.baseimport org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDDobject CustomSort2 {def main(args: Array[String]): Unit = {val conf = new SparkConf().setAppName(this.getClass.getSimpleName).setMaster("local[2]")val sc = new SparkContext(conf)// 排序规则:首先按照颜值的降序,如果产值相等,再按照年龄的升序val users = Array("xiaohong 30 50","xiaobai 90 50","xiaozhang 66 50", "xiaolong 66 66")// 将Driver端的数据并行化变成RDDval lines:RDD[String] = sc.parallelize(users)// 切分整理数据val userRDD: RDD[(String, Int, Int)] = lines.map(line => {val fields = line.split(" ")val name = fields(0)val age = fields(1).toIntval fv = fields(2).toInt(name, age, fv)})// 排序(传入了一个排序规则, 不会改变数据的格式,只会以改变顺序)  class Boy不是多例val sorted: RDD[(String, Int, Int)] = userRDD.sortBy(tp=> new Boy(tp._2,tp._3))val result = sorted.collect()println(result.toBuffer)sc.stop()}
}// shuffle时数据要通过网络传输,需要对数据进行序列化
class Boy(val age:Int, val fv:Int) extends Ordered[Boy] with Serializable {override def compare(that: Boy): Int = {if (this.fv == that.fv){this.age - that.age}else{-(this.fv - that.fv)}}
}

方式3:作用多例的case class来做排序规则

package com.rz.spark.baseimport org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDDobject CustomSort3 {def main(args: Array[String]): Unit = {val conf = new SparkConf().setAppName(this.getClass.getSimpleName).setMaster("local[2]")val sc = new SparkContext(conf)// 排序规则:首先按照颜值的降序,如果产值相等,再按照年龄的升序val users = Array("xiaohong 30 50","xiaobai 90 50","xiaozhang 66 50", "xiaolong 66 66")// 将Driver端的数据并行化变成RDDval lines:RDD[String] = sc.parallelize(users)// 切分整理数据val userRDD: RDD[(String, Int, Int)] = lines.map(line => {val fields = line.split(" ")val name = fields(0)val age = fields(1).toIntval fv = fields(2).toInt(name, age, fv)})// 排序(传入了一个排序规则, 不会改变数据的格式,只会以改变顺序)val sorted: RDD[(String, Int, Int)] = userRDD.sortBy(tp=> Man(tp._2,tp._3))val result = sorted.collect()println(result.toBuffer)sc.stop()}
}// shuffle时数据要通过网络传输,需要对数据进行序列化
// case class 本身已经实现序列化且多例 (缺点是规则写死,无法用新的规则排序,可用隐式转换实现)
case class Man(age:Int, fv:Int) extends Ordered[Man]{override def compare(that: Man): Int = {if (this.fv == that.fv){this.age - that.age}else{-(this.fv - that.fv)}}
}

方式4,通过隐式参数指定灵活的排序规则

package com.rz.spark.baseimport org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDDobject CustomSort4 {def main(args: Array[String]): Unit = {val conf = new SparkConf().setAppName(this.getClass.getSimpleName).setMaster("local[2]")val sc = new SparkContext(conf)// 排序规则:首先按照颜值的降序,如果产值相等,再按照年龄的升序val users = Array("xiaohong 30 50","xiaobai 90 50","xiaozhang 66 50", "xiaolong 66 66")// 将Driver端的数据并行化变成RDDval lines:RDD[String] = sc.parallelize(users)// 切分整理数据val userRDD: RDD[(String, Int, Int)] = lines.map(line => {val fields = line.split(" ")val name = fields(0)val age = fields(1).toIntval fv = fields(2).toInt(name, age, fv)})// 排序(传入了一个排序规则, 不会改变数据的格式,只会以改变顺序)// 传入一个Ordering类型的隐式参数
    import SortRules.OrderingHeroval sorted: RDD[(String, Int, Int)] = userRDD.sortBy(tp=> Hero(tp._2,tp._3))val result = sorted.collect()println(result.toBuffer)sc.stop()}
}// shuffle时数据要通过网络传输,需要对数据进行序列化
// case class 本身已经实现序列化,不指定固定的排序规则,由隐式参数指定
case class Hero(age:Int, fv:Int)

方式5:元组有自己的compareTo方法,充分利用元组的比较规则,元组的比较规则:先比第一,相等再比第二个。如果还满足不了再自定义排序的类来排序

package com.rz.spark.baseimport org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDDobject CustomSort5 {def main(args: Array[String]): Unit = {val conf = new SparkConf().setAppName(this.getClass.getSimpleName).setMaster("local[2]")val sc = new SparkContext(conf)// 排序规则:首先按照颜值的降序,如果产值相等,再按照年龄的升序val users = Array("xiaohong 30 50","xiaobai 90 50","xiaozhang 66 50", "xiaolong 66 66")// 将Driver端的数据并行化变成RDDval lines:RDD[String] = sc.parallelize(users)// 切分整理数据val userRDD: RDD[(String, Int, Int)] = lines.map(line => {val fields = line.split(" ")val name = fields(0)val age = fields(1).toIntval fv = fields(2).toInt(name, age, fv)})// 排序(传入了一个排序规则, 不会改变数据的格式,只会以改变顺序)// 充分利用元组的比较规则,元组的比较规则:先比第一,相等再比第二个val sorted: RDD[(String, Int, Int)] = userRDD.sortBy(tp=> (-tp._3,tp._2))val result = sorted.collect()println(result.toBuffer)sc.stop()}
}

方式6:和方式5相似,但是用到自定义的隐式参数作排序规则

package com.rz.spark.baseimport org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}object CustomSort6 {  def main(args: Array[String]): Unit = {val conf = new SparkConf().setAppName(this.getClass.getSimpleName).setMaster("local[2]")val sc = new SparkContext(conf)// 排序规则:首先按照颜值的降序,如果产值相等,再按照年龄的升序val users = Array("xiaohong 30 50","xiaobai 90 50","xiaozhang 66 50", "xiaolong 66 66")// 将Driver端的数据并行化变成RDDval lines:RDD[String] = sc.parallelize(users)// 切分整理数据val userRDD: RDD[(String, Int, Int)] = lines.map(line => {val fields = line.split(" ")val name = fields(0)val age = fields(1).toIntval fv = fields(2).toInt(name, age, fv)})// 排序(传入了一个排序规则, 不会改变数据的格式,只会以改变顺序)// 充分利用元组的比较规则,元组的比较规则:先比第一,相等再比第二个val sorted: RDD[(String, Int, Int)] = userRDD.sortBy(tp=> (-tp._3,tp._2))val result = sorted.collect()println(result.toBuffer)sc.stop()}
}

 

转载于:https://www.cnblogs.com/RzCong/p/10660669.html