题意:设a, b, c, d, k。 x属于[a, b], y属于[c, d]。问满足gcd(x, y)=k的(x, y)的对数是多少?注意:a=c=1;
公式推导:
注意一下,中间过程别爆精度:
ac代码:
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; #define ll long long const int N = 1e5 + 5; bool vis[N]; int mu[N], prime[N]; void mobiws() {int cnt = 0;mu[1] = 1;for (int i = 2; i < N; ++i){if (!vis[i]){prime[++cnt] = i; mu[i] = -1;}for (int j = 1; j<=cnt&&prime[j] * i < N; ++j){vis[prime[j] * i] = 1;if (i%prime[j] == 0){ mu[prime[j] * i] = 0; break; }mu[prime[j] * i] =- mu[i];}}for (int i = 2; i < N; ++i)mu[i] += mu[i - 1]; } ll cal(int n, int m, int d) {if (!n || !m || !d)return 0;n /= d; m /= d;int last;ll ans = 0;for (int i = 1; i <= min(n, m); i = last + 1){last = min(n / (n / i), m / (m / i));ans += (mu[last] - mu[i - 1])*(1LL)*(n / i)*(1LL)*(m / i);}return ans; } int main() {mobiws();int t, a, b, c, d, k, cas = 0;scanf("%d", &t);while (t--){scanf("%d%d%d%d%d", &a, &b, &c, &d, &k);printf("Case %d: ", ++cas);ll ans = cal(b, d, k) - cal(min(b, d), min(b, d), k)/2;printf("%lld\n", ans);} }