您现在的位置是:主页 > news > 深圳网站建设企业/网站优化课程培训

深圳网站建设企业/网站优化课程培训

admin2025/5/14 13:19:53news

简介深圳网站建设企业,网站优化课程培训,忠县网站建设,wordpress图片抓取插件题目链接:http://uoj.ac/problem/131 题意:给出一个字符串,第i个字符对应的值为a[i], 对于i∈[0,n),求最长公共前缀大于等于i的字串对个数,并求这些字符串对开头对应值相乘最大值。n3*10^5 题解: 学了个厉害的东西啊。…

深圳网站建设企业,网站优化课程培训,忠县网站建设,wordpress图片抓取插件题目链接:http://uoj.ac/problem/131 题意:给出一个字符串,第i个字符对应的值为a[i], 对于i∈[0,n),求最长公共前缀大于等于i的字串对个数,并求这些字符串对开头对应值相乘最大值。n3*10^5 题解: 学了个厉害的东西啊。…

题目链接:http://uoj.ac/problem/131

题意:给出一个字符串,第i个字符对应的值为a[i], 对于i∈[0,n),求最长公共前缀大于等于i的字串对个数,并求这些字符串对开头对应值相乘最大值。n=3*10^5

 

题解:

学了个厉害的东西啊。。。

正解好像是sa+并查集(合并height)

然而我学了个用sam的做法。。

 

对于第一问:

首先我们要知道,建立后缀自动机之后,parent树就是逆序串的后缀树。

why?看这个博客好了:http://z55250825.blog.163.com/blog/static/15023080920144542541495/

 

直接逆序建后缀自动机,

因为对于现在parent树而言,任意两点的LCP等于两点在树上的LCA的step(step就是sam里的那个step。。一开始没想清楚还以为是parent-tree上的深度。。于是WA了。。)

这是转化成一个简单的树形dp了:按逆拓扑序更新(从孩子到parent),对于当前点x,看它是多少对点对的lcp。

假设有四个孩子,孩子的点数(就是这棵子树上有多少个点)分别为s1,s2,s3,s4

cnt[x]=1*(s1+s2+s3+s4)(这是x到x的孩子)  +  (s1+s2+s3)*s4  + (s1+s2)*s3  + s1*s2

那我们每遍历一个孩子y,就sum[x]+=sum[y],对于一个新的孩子yy,cnt[x]+=sum[x]*sum[yy];

 

 

对于第二问:

对于当前的parent树而言,等价于求parent树上两个叶节点乘积的最大值。

又因为考虑到ai可能是负数,所以我们只需要记录最大值,次大值,最小值,次小值就可以了。

 

参考题解:http://www.cnblogs.com/joyouth/p/5366396.html

注意很多细节。。

sam真的超厉害。。可以直接转化成后缀树和后缀数组。。

ORZ。。

 

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<queue>
using namespace std;typedef long long LL;
const int N=2*3*100010;
const LL INF=1LL<<62;
int sl,cl,tot,last,c[N],in[N],first[N],step[N],pre[N],son[N][30];
LL w[N],cnt[N],ans[N],mx[N],smx[N],mn[N],smn[N],sum[N];
char s[N];
bool vis[N];
queue<int> Q;LL maxx(LL x,LL y){return x>y ? x:y;}
LL minn(LL x,LL y){return x<y ? x:y;}
void gmax(LL &x,LL y){x=maxx(x,y);}
void gmin(LL &x,LL y){x=minn(x,y);}int add_node(int x)
{step[++tot]=x;return tot;
}void clear()
{memset(son,0,sizeof(son));memset(pre,0,sizeof(pre));memset(step,0,sizeof(step));memset(in,0,sizeof(in));// memset(cnt,0,sizeof(cnt));memset(sum,0,sizeof(sum));tot=0;add_node(0);last=1;
}void extend(int ch)
{int p=last,np=add_node(step[p]+1);while(p && !son[p][ch]){son[p][ch]=np;in[np]++;p=pre[p];}if(!p) pre[np]=1;else{int q=son[p][ch];if(step[q]==step[p]+1) pre[np]=q;else{int nq=add_node(step[p]+1);for(int i=1;i<=26;i++) if(son[q][i]) son[nq][i]=son[q][i],in[son[q][i]]++;pre[nq]=pre[q];pre[np]=pre[q]=nq;while(p && son[p][ch]==q) in[q]--,in[nq]++,son[p][ch]=nq,p=pre[p];}}last=np;
}void get_tp()
{while(!Q.empty()) Q.pop();memset(vis,0,sizeof(vis));Q.push(1);vis[1]=1;cl=0;while(!Q.empty()) {int x=Q.front();c[++cl]=x;vis[x]=0;Q.pop();for(int i=1;i<=26;i++){int y=son[x][i];if(!y) continue;in[y]--;if(!in[y] && !vis[y]) vis[y]=1,Q.push(y);}}
}int main()
{freopen("a.in","r",stdin);int x,y,ch;scanf("%d",&sl);scanf("%s",s+1);for(int i=1;i<=sl;i++) scanf("%lld",&w[i]);clear();for(int i=sl;i>=1;i--) extend(s[i]-'a'+1);get_tp();for(int i=1;i<=tot;i++) mx[i]=-INF,smx[i]=-INF,mn[i]=INF,smn[i]=INF;x=1;for(int i=sl;i>=1;i--){ch=s[i]-'a'+1;x=son[x][ch];mx[x]=mn[x]=w[i];sum[x]++;}LL tmp;memset(cnt,0,sizeof(cnt));for(int i=0;i<=sl;i++) ans[i]=-INF;for(int i=cl;i>=1;i--){y=c[i],x=pre[y];tmp=-INF;if(smx[y]>-INF) gmax(tmp,mx[y]*smx[y]);if(smn[y]<INF)  gmax(tmp,mn[y]*smn[y]);gmax(ans[step[y]],tmp);cnt[step[x]]+=sum[x]*sum[y];sum[x]+=sum[y];if(mx[y]>=mx[x]) smx[x]=mx[x],mx[x]=mx[y];//debug >=else if(mx[y]>smx[x]) smx[x]=mx[y];if(mn[y]<=mn[x]) smn[x]=mn[x],mn[x]=mn[y];//debug <=else if(mn[y]<smn[x]) smn[x]=mn[y];}// for(int i=0;i<sl;i++) printf("x = %d  cnt = %lld  ans = %lld\n",i,cnt[i],ans[i]);for(int i=sl-1;i>=0;i--) {cnt[i]+=cnt[i+1];gmax(ans[i],ans[i+1]);}for(int i=0;i<sl;i++) {if(!cnt[i]) ans[i]=0;printf("%lld %lld\n",cnt[i],ans[i]);}return 0;
}

 

转载于:https://www.cnblogs.com/KonjakJuruo/p/5929170.html