您现在的位置是:主页 > news > 亳州网站建设公司/友链交换网站
亳州网站建设公司/友链交换网站
admin2025/5/7 6:34:37【news】
简介亳州网站建设公司,友链交换网站,wordpress 弹出登录页,wordpress 内存方法一:滑动窗口 思路和算法 我们先用一个例子考虑如何在较优的时间复杂度内通过本题。 我们不妨以示例一中的字符串 abcabcbb 为例,找出从每一个字符开始的,不包含重复字符的最长子串,那么其中最长的那个字符串即为答案。对于…
方法一:滑动窗口
思路和算法
我们先用一个例子考虑如何在较优的时间复杂度内通过本题。
我们不妨以示例一中的字符串 abcabcbb 为例,找出从每一个字符开始的,不包含重复字符的最长子串,那么其中最长的那个字符串即为答案。对于示例一中的字符串,我们列举出这些结果,其中括号中表示选中的字符以及最长的字符串:
-
以 (a)bcabcbb 开始的最长字符串为 (abc)abcbb;
-
以 a(b)cabcbb 开始的最长字符串为 a(bca)bcbb;
-
以 ab©abcbb 开始的最长字符串为 ab(cab)cbb;
-
以 abc(a)bcbb 开始的最长字符串为 abc(abc)bb;
-
以 abca(b)cbb 开始的最长字符串为 abca(bc)bb;
-
以 abcab©bb 开始的最长字符串为 abcab(cb)b;
-
以 abcabc(b)b 开始的最长字符串为 abcabc(b)b;
-
以 abcabcb(b) 开始的最长字符串为 abcabcb(b)。
发现了什么?如果我们依次递增地枚举子串的起始位置,那么子串的结束位置也是递增的!这里的原因在于,假设我们选择字符串中的第 k 个字符作为起始位置,并且得到了不包含重复字符的最长子串的结束位置为rk 。那么当我们选择第k+1 个字符作为起始位置时,首先从 k+1 到 rk的字符显然是不重复的,并且由于少了原本的第 k 个字符,我们可以尝试继续增大 rk,直到右侧出现了重复字符为止。
这样一来,我们就可以使用「滑动窗口」来解决这个问题了:
-
我们使用两个指针表示字符串中的某个子串(或窗口)的左右边界,其中左指针代表着上文中「枚举子串的起始位置」,而右指针即为上文中的 rk ;
-
在每一步的操作中,我们会将左指针向右移动一格,表示 我们开始枚举下一个字符作为起始位置,然后我们可以不断地向右移动右指针,但需要保证这两个指针对应的子串中没有重复的字符。在移动结束后,这个子串就对应着 以左指针开始的,不包含重复字符的最长子串。我们记录下这个子串的长度;
-
在枚举结束后,我们找到的最长的子串的长度即为答案。
判断重复字符
在上面的流程中,我们还需要使用一种数据结构来判断 是否有重复的字符,常用的数据结构为哈希集合(即 C++ 中的 std::unordered_set,Java 中的 HashSet,Python 中的 set, JavaScript 中的 Set)。在左指针向右移动的时候,我们从哈希集合中移除一个字符,在右指针向右移动的时候,我们往哈希集合中添加一个字符。
至此,我们就完美解决了本题。
代码
class Solution {public int lengthOfLongestSubstring(String s) {// 哈希集合,记录每个字符是否出现过Set<Character> occ = new HashSet<Character>();int n = s.length();// 右指针,初始值为 -1,相当于我们在字符串的左边界的左侧,还没有开始移动int rk = -1, ans = 0;for (int i = 0; i < n; ++i) {if (i != 0) {// 左指针向右移动一格,移除一个字符occ.remove(s.charAt(i - 1));}while (rk + 1 < n && !occ.contains(s.charAt(rk + 1))) {// 不断地移动右指针occ.add(s.charAt(rk + 1));++rk;}// 第 i 到 rk 个字符是一个极长的无重复字符子串ans = Math.max(ans, rk - i + 1);}return ans;}}
复杂度分析
- 时间复杂度:O(N),其中 NN 是字符串的长度。左指针和右指针分别会遍历整个字符串一次。
- 空间复杂度:O(∣Σ∣),其中Σ 表示字符集(即字符串中可以出现的字符),∣Σ∣ 表示字符集的大小。在本题中没有明确说明字符集,因此可以默认为所有 ASCII 码在 [0, 128)[0,128) 内的字符,即 ∣Σ∣=128。我们需要用到哈希集合来存储出现过的字符,而字符最多有∣Σ∣ 个,因此空间复杂度为 O(∣Σ∣)。