您现在的位置是:主页 > news > 手机交互网站/seo是什么级别
手机交互网站/seo是什么级别
admin2025/5/6 1:01:16【news】
简介手机交互网站,seo是什么级别,哪些网站可以做旅游,国家卫健委宣布不用戴口罩该楼层疑似违规已被系统折叠 隐藏此楼查看此楼麻烦各位做贝叶斯网络的朋友帮我看看。。谢谢了。function [engine, loglik] enter_evidence(engine, evidence, varargin)% ENTER_EVIDENCE Add the specified evidence to the network (jtree)% [engine, loglik] enter_eviden…
该楼层疑似违规已被系统折叠 隐藏此楼查看此楼
麻烦各位做贝叶斯网络的朋友帮我看看。。谢谢了。
function [engine, loglik] = enter_evidence(engine, evidence, varargin)
% ENTER_EVIDENCE Add the specified evidence to the network (jtree)
% [engine, loglik] = enter_evidence(engine, evidence, ...)
%
% evidence{i} = [] if X(i) is hidden, and otherwise contains its observed value (scalar or column vector).
%
% The following optional arguments can be specified in the form of name/value pairs:
% [default value in brackets]
%
% soft - a cell array of soft/virtual evidence;
% soft{i} is a prob. distrib. over i*s values, or [] [ cell(1,N) ]
%
% e.g., engine = enter_evidence(engine, ev, *soft*, soft_ev)
bnet = bnet_from_engine(engine);
ns = bnet.node_sizes(:);
N = length(bnet.dag);
engine.evidence = evidence; % store this for marginal_nodes with add_ev option
engine.maximize = 0;
% set default params
exclude = [];
soft_evidence = cell(1,N);
% parse optional params
args = varargin;
nargs = length(args);
for i=1:2:nargs
switch args{i},
case *soft*, soft_evidence = args{i+1};
case *maximize*, engine.maximize = args{i+1};
otherwise,
error([*invalid argument name * args{i}]);
end
end
onodes = find(~isemptycell(evidence));
hnodes = find(isemptycell(evidence));
pot_type = determine_pot_type(bnet, onodes);
if strcmp(pot_type, *cg*)
check_for_cd_arcs(onodes, bnet.cnodes, bnet.dag);
end
if is_mnet(bnet)
pot = engine.user_pot;
clqs = engine.nums_ass_to_user_clqs;
else
% Evaluate CPDs with evidence, and convert to potentials
pot = cell(1, N);
for n=1:N
fam = family(bnet.dag, n);
e = bnet.equiv_class(n);
if isempty(bnet.CPD{e})
error([*must define CPD * num2str(e)])
else
pot{n} = convert_to_pot(bnet.CPD{e}, pot_type, fam(:), evidence);
end
end
clqs = engine.clq_ass_to_node(1:N);
end
% soft evidence
soft_nodes = find(~isemptycell(soft_evidence));
S = length(soft_nodes);
if S > 0
assert(pot_type == *d*);
assert(mysubset(soft_nodes, bnet.dnodes));
end
for i=1:S
n = soft_nodes(i);
pot{end+1} = dpot(n, ns(n), soft_evidence{n});
end
clqs = [clqs engine.clq_ass_to_node(soft_nodes)];
[clpot, seppot] = init_pot(engine, clqs, pot, pot_type, onodes);
[clpot, seppot] = collect_evidence(engine, clpot, seppot);
[clpot, seppot] = distribute_evidence(engine, clpot, seppot);
C = length(clpot);
ll = zeros(1, C);
for i=1:C
[clpot{i}, ll(i)] = normalize_pot(clpot{i});
end
loglik = ll(1); % we can extract the likelihood from any clique
engine.clpot = clpot;